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molecules contains one more non-hydrogen atom 
than the original chemical formula shows. 
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Abstract 

The previously reported distorted zeroth-order 
fringes in a bright-field Tanaka pattern from a dislo- 
cated region in silicon have been computer simulated 
and the experimental and the many-beam calculated 
patterns agree well. Calculations are carried out for 
nine distinct cases of edge, screw and 60 ° dislocations 
in a silicon crystal. The general usefulness of the 
distortion of the ZOLZ pattern in determining 
geometrical properties of a dislocation is discussed. 

I. Introduction 

Carpenter & Spence (1982) reported splitting of 
higher-order Laue-zone (HOLZ) lines and distortion 
of the zeroth-order Laue-zone (ZOLZ) pattern in a 
convergent-beam electron diffraction (CBED) pat- 
tern from a dislocation in silicon. They also simulated 
the splitting of HOLZ lines by a method involving 
the column approximation and used the splitting of 
HOLZ lines to determine the Burgers vector of a 
dislocation. Cherns & Preston (1986) proposed a 
method to determine the Burgers vector of a disloca- 
tion using the splitting of a diffraction line in a 
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defocused CBED pattern. Later, Cherns, Kiely & 
Preston (1988) used the sense of the displacement of 
the diffraction peak to deduce the sign of the Burgers 
vector of the dislocation and this was confirmed by 
kinematical calculation. Tanaka, Terauchi & 
Kaneyama (1988) made detailed and extensive calcu- 
lations to show the influence of various dislocations 
on the distortion of a diffraction line crossed by a 
dislocation line, on the basis of isotropic elasticity. 
They showed that at the crossing region the line of 
diffraction twists and splits into n+  1 lines, where 
n = g .  b. The sense of the shift depends on the sign 
of n. They also considered the effect of the g.  b x u 
term when n = 0 and demonstrated the determination 
of the Burgers vector of a dislocation in various cases. 
On the other hand, Bian (1986) reported observation 
of the relative shift of fringes in a bright-field ZOLZ 
pattern from a dislocation in AI, where, however, the 
Burgers vector and line direction of the dislocation 
(b and u) were unclear. In a systematic study of the 
influence of dislocations on the ZOLZ of a CBED 
pattern, Wen, Wang & Lu (1989) observed a similar 
shift of ZOLZ fringes in large-angle convergent-beam 
electron diffraction (LACBED; see Tanaka, Saito, 
Ueno & Harada, 1980) patterns near a dislocation, 
as well as compression and elongation of the patterns. 
They pointed out that this distortion of ZOLZ patterns 
resulted from the relative movement of two parts of 
the pattern separated by the shadow image of the 
dislocation in the direction of the Burgers vector. This 
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relative movement causes the ZOLZ pattern to be 
elongated or compressed, or to be out of register, 
depending upon the relative orientation of b, u and 
the position of the incident-beam cross over relative 
to the specimen. These authors also proposed that 
this phenomenon could be used to determine the 
Burgers vector of a dislocation and its sign. To under- 
stand the experimental observation and to obtain 
further insight on the influence of dislocations on the 
ZOLZ pattern, a proper computer simulation is 
desired. For this purpose, a computer program is 
developed based on anisotropic elasticity and 
dynamical diffraction theory, involving the column 
approximation, to simulate the LACBED (Tanaka) 
pattern from a dislocated area. On the other hand, it 
is sometimes important to make quick in situ iden- 
tification of dislocation geometries during studies of 
dislocation behavior under the transmission electron 
microscope. The distorted ZOLZ pattern can be used 
for this purpose to determine dislocation characters 
and the sign of the Burgers vector. 

In this paper we describe briefly the program (§ 2), 
and show the calculated Tanaka pattern from possible 
pure edge, pure screw and 60 ° dislocations (§ 3). In 
§ 4, application of this distorted ZOLZ pattern in the 
identification of dislocation is considered, and the 
advantages and disadvantages of this method dis- 
cussed. Some conclusions are drawn in § 5. 

2. Outline of the program 

The wave amplitude, q~g, at the bottom surface of a 
specimen containing a dislocation can be given in 
matrix l~orm "(e.g. Hirsch, Howie, Nicholson, Pashley 
& Whelan, 1977) as 

dqgg/dz = ~ MghCPh (1) 
h 

where the matrix elements are 

Mgh = ,n'(-- 1/¢'g-h + i~ ~g-h) g ~ h 

Mgg = 7r[-  1/sc~ + 2isg + 2id(g.  R) /dz]  

with z the variable along incident-beam direction, sg 
the deviation parameter for beam g, R the displace- 
ment due to a dislocation, scg the extinction distance, 
¢~ and ~:g the mean and the anomalous absorption 
distances respectively. The displacement field, R, is 
evaluated using Stroh's (1958) formulation and the 
corresponding Fortran routines of Head, Humble, 
Clarebrough, Morton & Forwood (1973). The 
integrating routines written by these authors are also 
used in the present program with some extension to 
account for the many-beam situation. 

To obtain the amplitude distribution in a zone-axis 
CBED pattern, one needs to integrate (1) along each 
incident-beam direction. The incident electrons travel 
in a cone outside the specimen with its vertex (the 
beam cross over) above or below the specimen (Fig. 

1). Inside the specimen the beam is thought to travel 
along the zone axis since this direction is that of the 
vector of energy flow (the Poynting vector, e.g. 
Cowley, 1981) in the symmetrical case, which is the 
case to which this program is to be applied. The 
variation of ~g with the incident-beam direction, B, 
is seen through s~, which depends on the direction 
of B, and R, which varies with the position of the 
beam path relative to the dislocation. The dependence 
of the intensity on sg gives rise to the normal CBED 
pattern and the variation of the intensity with the 
beam position relative to the dislocation is responsible 
for the shadow image in a LACBED pattern. The 
defocus value DF which defines the level of the beam 
cross over is an important parameter in the calcula- 
tion. For a certain s~ range, when DF is close to zero, 
that is, the beam is focused on the specimen by the 
condenser lens, the calculated intensity distribution 
corresponds to a normal CBED pattern. If DF is 
large, either positive or negative (i.e. below or above 
the specimen), we will have a portion of a LACBED 
pattern (the Tanaka pattern). 

Fig. 2 is the program flow chart. After reading in 
data (including the Burgers vector b, the line direction 
u, the central-beam direction B, the foil normal F and 
the thickness t), the program calculates the off- 
diagonal matrix elements Mgh and Stroh's elastic 
constants for evaluating R. These quantities are 
independent of the variation of the beam direction 
in an incident cone. In the integration loop, the 
integration is carried out inside the circle defined by 
the intersection of the incident cone and the top 
surface of the specimen. For a point in the circle, sg 
is calculated according to the beam direction and the 
coordinate of the starting point of the integration is 
determined from the position of the beam cross over 
and the beam direction. The finishing point of the 
integration is just t' below the starting point along 
the direction of the central incident beam, which is 
the axis of the incident cone. After an integration is 
completed and the intensity for one point is obtained, 
the same procedure is repeated with different beam 
direction and starting value for the next point until 
the integration has scanned across the circle. When 
the integration loop is completed the intensity distri- 
bution is displayed as a half-tone pattern (Head et 

DF< >O 

(a) (b) 

Fig. 1. Ray diagram in the case of convergent-beam electron 
diffraction. The beam cross over is (a) above the specimen 
(DF<0) and (b) below the specimen (DF>0). 
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al., 1973). For the sake of comparison among patterns, 
the calculation and the display are so arranged that 
the line direction of the dislocation is always pointing 
vertically down and the line scanning direction is 
always horizontal. 

The program is executed on an IBM-PC personal 
computer with an 8087 co-processor. For a typical 
Tanaka pattern, about 700 points from a silicon speci- 
men 100 nm thick containing a dislocation, the calcu- 
lating time is about 2 h. The computing time can be 
reduced by consideration of the symmetry. For 
example, for an edge dislocation with its projection 
across the middle of the pattern, the computing time 
can be reduced by a factor of four. 

3. Computation results 

Fig. 3 shows calculated and experimental [001] 
bright-field CBED patterns from perfect Si. Five 
beams are included in the calculated pattern, they 
are 000, +220 and +220. On the whole, the experi- 
mental pattern (Fig. 3a)  and the calculated one (Fig. 
3b) agree well; both have the zeroth-order fringes 
forming squares. There are some differences in detail 
around the edge of the pattern, especially at the 
comers of the largest square. This discrepancy 
between the experimental and calculated patterns 
may mainly be because there are many reflections 
being excited to some extent at zone-axis incidence 
during an experiment, but only five beams are con- 
sidered in the calculation. In the central area of the 

MAIN PROGRAM SUBROUTINES 

I 
l READ IN DATA I 

I 
SET UP GEOMETRY I 

I 
i A.NISOTROPIC ELASTICITY J .... ~ .... NEWTON 

l 
START INTEGRATION 

I 
DETEPdMINE POSITION OF INTEGRATION COLUMN I 

l 

i I 
I CALCULATE sg FOR EACH BEAM 

J 

l INTEGRATING EQ.I ........ ~ .... I DERIV ] 
I 

i FIND INTENSITY AND J 
CORRESPONDING HALFTONE SYMBOL ..... > 

I FINI~;H ? 
NO 

YES 

STORE THE PATTERN I 

I 
1 HALFTONE DISPLAY ............... 

Fig. 2. Flow chart of the program. 

calculated pattern, where the agreement is good, the 
intensity distribution is mainly due to the interaction 
among the five beams included. In this work, we are 
only interested in the central part of the pattern and 
its distortion, thus five beams are a sufficiently good 
approximation for this purpose. 

The experimental and calculated patterns from a 
positive edge dislocation (i.e. the extra half plane of 
an atom is above the dislocation line) in Si are shown 
in Figs. 4(a)  and (b) and those from a negative edge 
in Figs. 4(c) and (d). In all patterns in Fig. 4, the 
beam cross over is above the specimen. The Tanaka 
patterns from the edge dislocations in Fig. 4 are no 
longer square, but are compressed (Figs. 4a and b) 
or elongated (Figs. 4c and d) along a direction per- 
pendicular to the shadow image, depending upon the 
sign of the Burgers vector. The shadow images of the 
dislocations in Fig. 4 are shown vertically, which 
seems to have stronger contrast in the calculated 
patterns than in the experimental one. The shadow 
images in the calculated pattern are less reliable since 
at the vicinity of the dislocation the integration 
column is shifted sideways to avoid the severely dis- 
totted area near the dislocation core. 

In Fig. 4 the beam cross over is above the specimen 
for both calculated and experimental patterns. 
However, according to Wen et al. (1989), when the 
position of the beam cross over is below the sno,';mon, 

Fig. 3. (a) Experimental and (b) five-beam calculated CBED 
patterns from an Si perfect specimen. The thickness is 100 nm. 
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distortion of the ZOLZ pattern reverses. The calcu- 
lated CBED patterns in Fig. 5 support this point. 

We now consider some simple cases in a f.c.c. 
crystal where dislocations are of pure edge, pure 
screw and 60 ° characters. When looking down along 

the [001] direction in a cubic system, there are four 
different configurations for edge dislocations of 
(110)/2-type Burgers vector. For pure screw and 60 ° 
dislocations there are two and three distinct cases, 
respectively. These are listed in Table 1 and are shown 
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Fig. 4. Tanaka patterns from edge dislocations with the beam cross over above the specimen; (a) and (b) are experimental and calculated 
patterns from a positive edge dislocation, (c) and (d) are those from a negative edge dislocation. Parameters in the calculated patterns 
are (b) b=[l10]/2 and (d) b=[il0]/2; u=[li0], t= 1000/~,, DF=30 ixm. 

in Fig. 6. Fig. 7 shows computer simulations for all 
these nine cases, each from a pair of dislocations of 
opposite Burgers vector. In these calculated patterns, 
distortions are generally seen. One observes, from 
these calculations, that the distortion of the patterns 
from the opposite Burgers vector is of a different 
sense and that the distortions are of pure compres- 
sion/elongation,  pure shift of the two halves of the 
pattern separated by the shadow image of the disloca- 
tion line or a combination of these two. 

In Si, most of the dislocations are dissociated (e.g. 
Ray & Cockayne, 1970). Fig. 8 shows a series of 
calculated patterns from dissociated dislocations with 
different separations in an Si specimen. All other 
parameters in this calculation are the same as that in 
Fig. 7(bl) .  Comparison of Figs. 8 and 7 (b l )  indicates 

that the elongated feature remains until the separation 
is over 30 nm. This value is much greater than that 
commonly observed experimentally. 

The above calculated Tanaka patterns are com- 
puted with the distance between the beam cross over 
and the specimen, DF, being 30 txm. In this case the 
beam spot on the specimen is about 0.5 ~m for an 
angle range of about 1 °. The influence of this DF 
value on the distortion of the CBED pattern is seen 
from Fig. 9 for Si. When DF is reduced to 7 ~m, the 
pattern remains similar provided sg varies within the 
same range. However, when DF is down to 3 ~m the 
distortion begins to become irregular. Further reduc- 
tion of DF makes the pattern hardly recognizable as 
being elongated perpendicular  to the shadow image 
(Fig. 9e), as in the case of a normal CBED pattern 
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Table 1. The nine distinct cases o f  edge, screw and 60 ° 
dislocations when looking along the [001] axis 

Case Character  u b Gl ide  plane 

1 Edge [ 110] [110]/2 Stair rod 
2 Edge [112] [i10]/2 ( i i l )  
3 Edge [2il]  [011]/2 ( i i l )  
4 Edge [ 101 ] [701]/2 Stair rod 
5 Screw [110] [110]/2 
6 Screw [101] [101]/2 
7 60 ° [101] [110]/2 ( i l l )  
8 60 ° [lOl] [071]/2 ( i l l )  
9 60 ° [llO] [011]/2 ( l i l )  

from a dislocation. This is consistent with the experi- 
mental observations [e.g. Fig. 5 of the paper  by 
Carpenter & Spence (1982)]. When DF is negative 
and large in absolute value, i.e. the beam cross over 
is well above the specimen, the pattern becomes regu- 
lar and its distortion reverses. 

4. Discussion 

The above calculations show clearly the relative shift 
of the two parts of the patterns as experimentally 
observed. If a comparison is made with the experi- 
mental pattern, however, it is of importance to have 
the sense of the shift correct. In the calculation, 
precautions have been taken to ensure this. Firstly, 
we make sure that the order of the scan of integration 
and the display is consistent. An inconsisistency in 
these two will make the calculated pattern mirror 
reflected, probably leading to a false determination 
of the sense of the shift. Secondly, we ascertain that 
the input b, u, which are given in Miller indices, and 
the dislocation configurations expected are con- 
sistent. This is done by carefully following the RH/ FS  
perfect-crystal convention, which is compatible with 
the displacement of the dislocation as evaluated using 
Stroh's formulation (Head et al., 1973). The agree- 
ment of the computed and experimental patterns in 
Fig. 4 indicates that the sense of the shift in the 
calculated pattern is correct. 

From Fig. 7, the distortion of the ZOLZ pattern 
from a dislocation can be summarized as follows: (a) 
the pattern can be considered to be divided into two 
parts separated by the shadow image of the disloca- 
tion and the distortion can be considered as a relative 
shift of these two parts along the Burgers vector; (b) 
the sense of the shift depends on the sign of the 
Burgers vector and position of the beam cross over 
relative to the specimen height and (c) to determine 
the sense of the shift of the pattern, one may define 
a vector v = u x c, where c is the vector pointing from 
the dislocation line to the beam cross over. The side 
of the pattern to which v points moves along the 
direction of b, while the other side of the pattern 
moves along -b .  These properties are in agreement 
with those derived experimentally (Wen et al., 1989). 

With the assumption that dislocations in a f.c.c. 
lattice have a {111}(110) slip system (e.g. Hirth & 
Lothe, 1980), much information about a dislocation 
can be obtained from a [001] Tanaka pattern alone. 
When the shadow image of the dislocation is parallel 
to a (110) direction as in cases 1, 2, 5 and 9 (see Table 
1 and Fig. 7), the distortion of the ZOLZ pattern and 
the corresponding dislocation geometry are listed in 
Table 2. In this table, columns 1 and 2 are the cases 
and the dislocation characters as in Table 1, column 
3 shows the distortion, column 4 contains b', the 
projection of b on the (001) plane, derived from the 
distorted pattern in column 3, columns 5 and 6 are 
the possible u and b, respectively, according to the 
distorted pattern. The results in Table 2 are readily 
verified by looking at Fig. 6. We take the pattern in 
row 7 of Table 2 as an example. The movement of 

Fig. 5. Calcula ted  pattern f rom a positive edge dis locat ion as in 
Fig. 4 (a )  with the beam cross over below the specimen.  

Fig. 6. Stereographic  view o f  the nine distinct cases o f  edge, screw 
and 60 ° dislocations.  The straight line indicates the direction 
which can have project ion as the line direction in Fig. 7(c) (for 
details, see text). 
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the right half of this pattern is towards the bottom 
right (direction of b' in Table 2), resulting in the 
pattern being elongated perpendicular to and shifted 
down along the shadow image of the distortion. Fig. 
6 indicates that the ( l l0 )  direction which can have 
the appropriate projection direction (5') is either (011) 

I l i lo  I ~  i i l l  

,l#il#,m.i.!l,~Mikli.!,iiil_, 
:if', ,IIIIIIIII::IIIIIHIIII, i p' 

g il',:l]l~i!i!ilO~]i iJ 

I IN I t~NM 

or (01i), as given in column 6 of Table 2. On the 
other hand, Table 2 covei's all possible cases of dislo- 
cations of (110)/2 Burgers vector whose lines are 
parallel to [110]. Note that the distortion of the pat- 
terns in rows 1 and 3 and rows 2 and 4 are similar 
but one can tell which is the case by the length of 
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Fig. 7. Calculated Tanaka patterns corresponding to the nine cases in Fig. 6. (a) to t*) are nine pairs of  ±b  patterns, corresponding 
to the nine cases in Table 1 and Fig. 6. Rows 1 and 2 are pairs of patterns of  opposite Burgers vector. In all the patterns, u points 
down vertically, and the vector v points to the right. 
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Fig. 8. Calculated Tanaka 
patterns from dissociated 
dislocations in Si. The 
separation is (a) 10nm, 
(b) 20 nm, (c) 30 nm, (d) 
40nm and (e) 60nm, 
respectively. 

Fig. 9. A series of calcu- 
lated Tanaka patterns 
with (a) DF= 17 Izm, (b) 
101zm, (c) 71zm, (d) 
3 izm and (e) 1 izm. 
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Table 2. Distortion of  Tanaka pattern and geometry 
of  dislocation with projection of  u parallel to the [ 110] 

direction, which points vertically down 

The beam cross over is below the specimen and the vector v = u x c 
points to the right. 

Case Character Pattern b' u b 
1 Edge I-I~ --* [110] [i10]/2 

1 Edge ~] ~-- [110] [110]/2 

2 Edge [-[D ~ [112] [i10]/2 

2 Edge ~ *- [ll2] [170]/2 

5 Screw E[~ ~ [110] [110]/2 
l 

5 Screw E] ~ 1' [110] [170]/2 
| 

9 60° l-I-1l [110l [017]/21°11]/2 

9 60 ° E[~I \ [110] [077]/2 
[071]/2 

9 60 ° E[ 2[ ¢" [110] [101]/2 
[107]/2 

9 60 ° El 'T] ": [110] [707]/2 
[701]/2 

the shadow image since these dislocations in a speci- 
men with surface close to (001) have quite different 
[001] projections (see Fig. 6). 

In the cases where the shadow image of a disloca- 
tion is parallel to a (100) direction, i.e. to a diagonal 
of the ZOLZ pattern, the relationship between 
geometries of a dislocation and corresponding pat- 
terns are listed in Table 3. In this table, the distortion 
of the pattern of the pure edge and pure screw disloca- 
tions (cases 4 and 6) is pure shift parallel to the 
shadow image, while the distortion of 60 ° dislocations 
in the table has a component perpendicular to the 
shadow image. 

Although substantial information about disloca- 
tions of simple cases can be obtained from a [001] 
LACBED pattern, it is noticed from Tables 2 and 3 
that there are uncertainties for u and b in some cases. 
There are two possible u's in case 2 to give the same 
[001] projection, that is, [112] and [112]. Similar 
ambiguity exists in all cases in Table 2. However, in 
many investigations, one can choose u arbitrarily 
from the two equivalent crystailographic directions 
and then b is determined accordingly. If a specific 
determination of u is required, it can be done by 
tilting the specimen about a direction perpendicular 
to the shadow image. The variation in projection 
length of the dislocation allows u to be determined 
uniquely. Ambiguity in determining b exists in two 

Table 3. Distortion of  Tanaka pattern and geometry 
of  dislocation with projection of  u parallel to the [100] 

direction, which points vertically down 

The beam cross over is below the specimen and the vector v = u x c 
points to the right. 

Case Character Pattern b' u b 
4 Edge ~ ~' [101] [101]/2 

4 Edge (~) ~ [101] [101]/2 

6 Screw ~ ~ [101] [101]/2 

6 Screw ~ )  1" [101] [10T]/2 

7 60 ° ( )  ~ [101] [110]/2 

(~ -- 7 60 ° \ [101] [110]/2 

7 60 ° ~ )  ¢" [101] [110]/2 

7 60 ° ~x~ "~ [101] []'10]/2 

8 60 ° + *-- [101] [0ill/2 

8 60 ° ~ )  --} [101] [011]/2 

60 ° cases, i.e. cases 8 and 9, as well as cases 4 (stair-rod 
edge) and 6 (screw). This ambiguity occurs because 
the directions of the Burgers vectors in these cases 
are mirror images of each other through the (001) 
plane so that they have the same (001) projections. 
There are four pairs of these directions of b which 
cannot be determined uniquely. These are [011] and 
[011], [011"] and [011], [101] and [10T] and [TOT] and 
[101], as seen from Fig. 6. The directions of b which 
allow unique determination are [110] and [110] since 
their mirror images through (001) are themselves. The 
simplest way to avoid the above uncertainty is to 
image the dislocation in the two-beam condition (e.g. 
Head et al., 1973) with an appropriate diffraction 
vector which is perpendicular to one of the two pos- 
sible Burgers vectors as derived from the [001] Tanaka 
pattern. 

The edge dislocation in case 3 is a representative 
of general dislocations whose shadow image in a 
[001] Tanaka pattern is in a direction other than a 
(110) or a (100). There are four possible u directions 
for such a dislocation, as shown in Fig. 6 as the 
intersects of the straight line with the four {111} 
planes. For each of the four line directions there are 
three possible Burgers vectors, corresponding to the 
three (110) directions on the same {111} plane. The 
Burgers vector of the dislocation can be determined 
uniquely from a [001] Tanaka pattern, or with an 
extra two-beam image, depending on whether it has 
a (001) mirror image as discussed above. The deter- 
mined Burgers vector reduces the possibilities of u 
from four to two. We take Fig. 7(cl) as an example. 
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The possible u directions, whose [001] projection is 
like that shown in Fig. 7(c l ) ,  are [2 i l ] ,  [213], [213] 
or [211] (Fig. 6). The right-hand half of  the Tanaka 
pattern is seen to move up and towards the right, i.e. 
b' points to the two o'clock position. From Fig. 6, 
this corresponds to b - - [011] /2  or [011]/2. The line 
direction u is [211] or [213] for b = [011]/2, and [213] 
or [7-11] for b= [011] /2 .  To determine u uniquely, a 
tilt about, say, [110] is needed. Calculated patterns 
in Fig. 10 show the pattern distortion from disloca- 
tions with u = [2 i l ]  and [273], respectively. It shows 
that these dislocations are indeed distinguishable. 

The above discussions are relevant to an Si crystal 
with the diamond structure. For a simple f.c.c, struc- 
ture, the distortion of  a (001) Tanaka pattern will 
appear different since the 200-type reflections become 
the most important  ones at a (001) zone axis. In this 
case, one will expect the shift along a side of  the 
square pattern in Si to become a shift along a diagonal 
of the pattern in a f.c.c, structure. On the other hand, 
in a crystal of sphalerite structure, the pattern and its 
distortion become complicated owing to the residual 
200 forbidden reflections. The feasibility of  applying 
the distortion of ZOLZ patterns to study dislocation 
geometry in these crystals is under investigation. 

Compared with other methods of studying disloca- 
tion geometry, the unique feature of this LACBED 
method is that it provides directly the orientation of 
the projection of u and the sign of the Burgers vector 
in a distorted pattern, and this seems to be indepen- 

, . , .h I " -n ' l . .  

, .III"Ii!',,I',,,,,,,,i[.. 
_,' ,li',ll"ii'n,,i,,r 'all: Plll',lilililillilllli ,li',il'. 
.,I llh, l,lll!lll.ll ,II ",,,,,,,,,;;::,,,:,,,,.,p ,," 
a ....,...'l'rl,q,,l!l 

l I I I I  I I 

dent of the conditions g .  b = 0 and g .  b x u = 0. This 
allows a quick determination of the geometric proper- 
ties of a dislocation and the method is less influenced 
by the elastic anisotropy of the material. The disad- 
vantages of  this method are that the distortion in the 
ZOLZ pattern is best observed on the (001) axis, while 
it is not so profound in other orientations, and the 
distortion may not be clearly seen in some materials 
where it is not possible to have a square pattern even 
on the (001) zone axis in a perfect area. These limit 
the usefulness of this method. 

5. Summary 

(a)  The observed regularly distorted ZOLZ pattern 
in a [001] bright-field Tanaka pattern from pure edge, 
pure screw and 60 ° dislocations are simulated with 
the column approximation and the anisotropic elas- 
ticity of dislocation. The agreement of the calculated 
and experimental patterns is good. 

(b) The distortion in the pattern can be treated as 
a relative shift of the two halves of  the pattern separ- 
ated by the dislocation. The shift of the half  pattern 
to which the vector v = u x c points is parallel to the 
projection of  the Burgers vector on the (001) plane. 

(c) The defocus value of the Tanaka pattern is an 
important factor in the calculation. When it is small 
the calculated pattern is irregularly distorted. This is 
consistent with the experiment. 

: ' I m p  ' ¢ r ,  ,p , , ' "  
i '  

In Mi,inml 
g ",,,,,,...r'",J', 

Fig. 10. Calculated patterns with the projection of u as in Fig. 7(c). u is [211] for (a) to (c), and [213] for (e) to (g). The Burgers 
vectors are (a) [011]/2, (b) [i10]/2, (c) [101]/2, (e) [110]/2, (f) [011]/2 and (g) [101]/2. Note that the patterns in (c) and (g) are 
very similar because they have the same Burgers vector. The pattern in (d) is from a perfect area for comparison. 



112 SIMULATION OF DISTORTED ZOLZ PATTERNS 

(d) The calculation shows that substantial informa- 
tion about dislocation geometry can be obtained from 
a distorted [001] Tanaka pattern. In some cases this 
allows the dislocation to be identified uniquely. In 
general a unique determination of geometric proper- 
ties needs an extra two-beam image. 

(e) The advantage of this method is that the projec- 
tion of u and b can be directly observed during TEM 
observation. This is good for in situ investigation. Its 
disadvantages are that it requires observations at a 
special orientation (a (001) axis) and that it may not 
be applied to materials where there is no square-like 
ZOLZ pattern in a perfect area. 
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Extinction in Finite Perfect Crystals: Case of a Sphere 
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Abstract 

The extinction factor in finite perfect crystals is calcu- 
lated from pure dynamical theory. In particular, a 
detailed solution is proposed for a sphere, in which 
case the extinction factor depends on the Bragg angle 
0 and the parameter ( R / A ) ,  where R is the radius 
of the crystal and A the extinction length. An approxi- 
mate solution based on the Laue geometry is proposed 
and corrections to take care of the complex boundary 
conditions are presented. An expression easily usable 
in refinement programs is proposed that fits the exact 

value to better than 1%. 

Introduction 

Two main difficulties are encountered when develop-" 
ing a model for extinction. The major one is to decide 
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Damascus, Syria. 

t Present address: Laboratoire de Min6ralogie-Cristallographie, 
Universit6 Pierre et Marie Curie, Tour 16, 4 Place Jussieu, 75252 
Paris CEDEX 05, France. 

on a coupling scheme between coherent and incoher- 
ent contributions to the diffracted intensity. A model 
based on purely incoherent intensities has been 
developed by Becker & Coppens (1974, 1975), which 
essentially corresponds to the assumption of pure 
'secondary extinction'. To go beyond this approach, 
Kato (1980) developed a statistical dynamical theory 
for the propagation of X-rays or neutrons in a distor- 
ted crystal. In this new approach, the separation 
between coherent rind incoherent components of the 
intensity is rather subtle, which shows that 'secon- 
dary' and 'primary' extinction are not independent 
concepts and that the celebrated mosaic model is 
invalid. The present authors have reformulated Kato's 
ideas in a more general way (A1 Haddad & Becker, 
1988; Becker & A1 Haddad, 1989, 1990; see also 
Guigay, 1989). This statistical theory contains the 
purely incoherent coupling as one limiting case. At 
the other limit, one also retrieves the purely coherent 
or dynamical theory that corresponds to "primary 
extinction by a perfect crystal'. 

The second difficulty has to do with the geometrical 
boundaries imposed by the sample under study. All 
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